Terascale Optimal PDE Simulations

David Keyes, project lead
http://www.tops-scidac.org
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You may know theon-line” Templates’ guides...

www.netlib.org/templates

124 pp.
... these are good starts, but not adequate for SciDAC scales!

www.netlib.org/etemplates

Templates for the Solution
of Algeb

raic Eigenvalue Problems

A Practical Guide
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[ e

Edited by

Thaojun Bai

James Demmel
Jack Dongarra
Axel Ruha

Henk van der Vorst

siam

410 pp.
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You may know theon-line” Templates’ guides...

www.netlib.org/templates www.netlib.org/etemplates
= Templates for the Solution
E;; of Algebraic Eigenvalue Problems
A Practical Guide

124 pp. 410 pp.
... SCIDAC puts some of the authors (and many others) “on-line” for you
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Scopefor TOPS

Design and implementation of “ solvers’

| Timeintegrators Optimizer —> Sens. Analyzer

(w/ sens. anal.) f (X, X, t, p) =0

m  Nonlinear solvers

(w/ sens. anal.) F (X, p) =0 int;rrna(ior
m  Optimizers l
rr&inf (x,u)st. F(x,u)=0,u2 0 ol
= Linear solvers AX = Db i
= Eigensolvers Ax=| Bx e
Softwar e integration — Indctes

Perfor mance optimization

Eigensol
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The power of optimal algorithms

e Advancesin algorithmic efficiency rival advancesin
hardwar e ar chitecture

e Consider Poisson’s equation on a cube of size N=n?

Year | Method Reference Storage Flops
1947 | GE (banded) | Von Neumann & no
Goldstine
1950 | Optimal SOR | Young n3
1971 | CG Reid n3
1984 | Full MG Brandt n3
e If Nn=64, thisimpliesan overall reduction in flops of

~16 million™
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Algorithmsand Moore's L aw

e Thisadvancetook placeover a span of about 36 years, or 24 doubling times

for Moore' sLaw

e 2¥»16 million b the same asthe factor from algorithms alone!

10°
Full Mgfc
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Whereto go past O(N) ?

Since O(N) isalready optimal, thereisnowhere further
“upward” to go in efficiency, but one must extend
optimality “outward”, to more general problems

Hence, for instance, algebraic multigrid (AMG), obtaining
O(N) In Indefinite, anisotropic, or inhomogeneous problems

AMG Framework

R”

error easily
damped by ! glgebraically

pointwise & smooth error
relaxation -

Choose coarse grids,
transfer operators, and
smoothers to eliminate

these “bad” components
within a smaller
dimensional space, and
recur
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Progress and prospects

Progress
= highlighted in five 2-pagerson

€ project overview
€ scalablesolvers
€ eagensolvers

€ optimizers

¢ performance

s http://www.osti.gov/scidac/updates2003.html

Prospects
= highlighted in five posters (5pm today)

Balance of talk contains pointersand
Introductions
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Poster iconography

a

#include "petscsles.h”
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Convergencerate nearly 700
Independent of discretization %%
parameters jzz

Optimal solvers

s Multilevel schemesfor linear

and nonlinear problems

= Newton-like schemesfor
guadr atic conver gence of

3001
2001

nonlinear problems

607

Time to §g_| y_tion

Problem Size (increasing with number of
processors)

iters

100
0_4

12 27 48 75
procs

time

501

301

201

101

12 27 48 75

B ASM-GMRES
B AMG-FMGRES

AMG shows perfect
iteration scaling, above
in contrast to ASM, bu
still needs performanc
work to achieve
temporal scaling, belov
on CEMM fusion code
M3D, though timeis
halved (or better) for
largeruns (all runs: 4k
dofs per processor)

E ASM-GMRES
B AMG-FMGRES
B AMG inner
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Solver interoperability

Hypre in PETSc

s codeswith PETSc interface (like CEMM’sM3D) can
Invoke Hypre routines as solversor preconditionerswith -7
command-line switch '

SuperLU DIST in PETSc 7
s asabove, with SuperLU_DIST \J

Hypre in Chombo

m sofar, Hypre isleva-solver only; itsAMG will Ok
ultimately be useful as a bottom-solver, sinceit can be o 4
coar sened indefinitely without attention to loss of nested e
geometric structure; also FAC isbeing developed for
AMR uses, like Chombo

Hypre and PETSc both being “ SIDL’ized”
m oneof TOPS threefoci of interaction with CCTTSS
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Other solver efforts

Have implemented CM RS s model problem (2D

periodic Hall MHD) in PETSc and included it in
PETSc 2.1.5release (ex29. ¢)

s Permitsorder-of-magnitude increase in timestep beyond Courant
stability limit for original CM RS code on uniform grid without
loss of accuracy in functionals of interest; importance will grow
for AMR applications

Will support future 2D and 3D versionsof TSI’s
BOLTZTRAN

Will support matrix-free Newton-Krylov solver for
iImplicit solves on composite AMR grids (APDEC)

Will support preconditioning with economical |ow-
order operatorsof TST T sdiscretizations of high
order

vy U g B e FemE B B . - on B B B o s SN SN



| nter action pathways, 2003*

Applications

SS

=—=p | ndicates“ dependence on”
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| nter action pathways, 2005*
Applicitions
APDEC// >SDM
i

PERC, CCA

|

SS

=—=p | ndicates“ dependence on”
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Eigensolvers
e Nouniversal eigensolver

m  type?
€ denseor sparse
€4 Hermitian or non-Hermitian
¢ standard (Ax=l x) or general (Ax=I Bx)
s seek?
€ all, extremal, or interior partsof the spectrum
€ just eigenvalue countswithin a spectral range
€ cigenvaluesthemselves, or eigenvalues and eigenvector s together

m lesources?
€ high or low storage available

e With AST, TOPSIspushingthe envelope on

= Sparse, generalized real symmetric case
s for acluster of low modes
= under both low storage and high storage conditions
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Eigensolversfor AST

AST’sOmega3P isusing TOPS softwareto find EM modes
of accelerator cavities, currently lossless (lossy to come)

£

Methods. Exact Shift-and-Invert Lanczos (ESIL),
combining PARPACK with SuperLU when thereis
sufficient memory, and Jacobi-Davidson otherwise

Current high-water marks:
m  47-cell chamber, finite element discr. of Maxwell’s egs.
= System dimension 1.3 million
= 20 million nonzerosin system, 350 million in LU factors
= halved analysistime on 48 processor s, scalable to many hundreds

@ﬁ—-

vy U g B e FemE B B . - ow B B

M Py



Integrators

e PVODE, IDA, and KINSOL now wrapped together
In SUNDIALS and augmented with forward and
adjoint sensitivity analysis capabilities

e Embodiesdecades of work in variable-order,
variable-order method-of-linesand Newton-Krylov
solversat LLNL

)74 1982 1988 1990 1994 1998 2000 today
AR =——8®)DEPACK—=—> VODE VODPK=—>CVODE I
—> PVODE » CVODE
—8¢nsP\ O DE=———>CVODES$
DASSL » DASPK e | DA » IDA
—>'Sensl DA » IDAS
NKSOL »KINSOL »KINSOL
1 SK | N S MKINSOL &
FORTRAN ANSI C

e Egpecially recommended for parameterized
applications, requiring uncertainty quantification
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Optimizers
Unconstrained or bound-

constrained optimization

m  TAO (powered by PETSc,
interfaced in CCTTSS component
framework) used in quantum
chemistry energy minimization

PDE-constrained optimization

m Veltisto (powered by PETSC) used
in flow control application, to
straighten out wingtip vortex by
wing surface blowing and sunction

“Best paper” at SC2002 went
to TOPSteam

m  PETSc-powered inverse wave
propagation employed to infer
hidden geometry




Perfor mance
TOPSIstuning sparse kernels

= (Jacobian) matrix-vector multiplication
m Sparsefactorization
= multigrid relaxation

Running on dozens of

apps/platform combinations
x  Power3 (NERSC) and Power4 (ORNL)

m factorsof 2 on structured (CMRS) and
unstructured (CEMM) fusion apps
Blocking of 4 rows

“Best student paper” at | CS2002 by 2 columnsis

went to TOPS team 4.07 times faster on
: : |tanium?2 than
m theoretical model and experimentson default T 1 blocks

effects of register blocking for sparse
mat-vec
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| nter oper ability/ CCA

Richest interaction so far with any team — fundamental
to TOPS

TOPS helping drive SIDL development
PETSc, Hypre both being SIDL’ized
PETSc, TAO part of CCA demosat SC’'02

PLAN: TOPS develop abstract interfacesfor linear
algebra (including eigenanalysis), nonlinear algebr a,
unconstrained and constrained optimization

PLAN: TOPS develop SemiStruct interface for
Cartesan AMR codes and composite grid codes
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Performance/PERC

Second richest interaction so far with any other team

TOPS Iimplicit solver examples providing ssmple free-
standing code targetsfor PERC

TOPS application partnerships providing relevant test
datato PERC

PLAN: ORNL acquisition of new Cray X-1 testbed
will focus strong interest on PPPL’s M3D and PETSc —
as sample unstructured implicit app

PLAN: createinsertion path in TOPS production
softwar e offeringsfor Berkeley and UTK successesin
performance improvementsfor sparse kernels
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Revelations/Obser vations

So far, we sped up © two customer codes (Omega3P, M3D) and
slowed down @ two others (Chombo, CMRYS)

= slowdown experiences are humbling, but extremely beneficial
= involve*“lessdifficult” base cases, where TOPS isnot needed

s provideachancefor TOPSto provide one computational physicist’s
solution to another, through a common solver interface

Appsgroupstend to under-employ complicated iterativelibraries
on their own

= underexploitation of available structure

= underexploitation of algorithmic options

= underexploitation of profiling tools
TOPSthinksof itswork as adding options, not making changes
TOPS can help alot before adding solver options

TOPS personnel have been learning at least as much asthey have
been helping —no oneisready to quit yet!
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L essonsto date

Working with the same code on the same machine
vastly speeds collaboration, as opposed to ftp’ing
matrices around the country, etc.

Exchanging code templates better than exchanging
papers, €tc.

Version control systems essential to having any last
Impact or “insertion path” for solver
Improvements

“Doing physics’ more fun than doing driven
cavities
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Questions
AN

X\ = Hasyour solver been unchanged for the past five or
ten years?

|syour solver running at 1-10% of machine peak?

Do you spend moretimein your solver than in your
physics?

|syour discretization or model fidelity [imited by the
solver ?

Areyou running loops around your analysis code?

Do you care how sensitive to parametersyour results
are?

|f the answer to any of these questionsis®“yes’, pleasetell usat the poster session!
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Who to talk with at this meeting ...

Linear solvers
(Rob Falgout, Tom Manteuffel,  Ask about our “0% down”

Steve McCormick) “no payment until 2006”

Eigensolvers :
(Eimond Ng) Introductory offers on
Nonlinear solvers parallel solvers that have

(David Keyes, Carol Woodward) \von g Bell Prize, a best
ODE/DAES/senditivity

(Carol Woodward) naper prize, taken ASCI
Optimizers physics apps to 3K
(Omar Ghattas) hrocessors, and taken
Softwar e integration hemi f
(Rob Falgout, David Keyes) C gmlsts to covers o

Per for mance optimization Science and Nature!

(Jack Dongarra)
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In applications
What we believe about ...

What we believe

Many of us cameto work on solversthrough interests

applications
users
solvers
legacy codes
software

... will impact how comfortable you are collaborating

Wit
So

1 US

nDlease give usyour comments on the next five

did

esl
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What we believe about apps

Solution of a system of e Nogeneral purpose PDE
PDEsisrarely agoal in solver can anticipate all
Itself needs
m Actual goal is =  Why we have national
characterization of a laboratories, not numerical
response surface or a design libraries for PDEstoday
or control strategy = A PDE solver improveswith
m  Solvingthe PDE isjust one user interaction
forward map in this process = Paceof algorithmic
m  Together with analysis, development isvery rapid

sengitivities and stability are
often desired

Softwar e tools for PDE
solution should also
support related follow-on
desires

P Extensibility isimportant
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What we bdlieve about users

Solvers are used by people
of varying numerical
backgrounds

Some expect MATLAB-like
defaults

Otherswant to control
everything, e.g., even varying
the type of smoother and
number of smoothings on
different levels of a multigrid
algorithm

Multilayer ed software
design isimportant

Users demand for
resolution isvirtually

Insatiable

s Relievingresolution
requirements with modeling
(e.g., turbulence closures,
homogenization) only defers
the demand for resolution to
the next leve

s Validating such models
requires high resolution

Processor scalability and
algorithmic scalability
(optimality) arecritical
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What we believe about legacy code

e Portingtoascalable e Legacy solversmay be
framework does not mean limiting resolution,
starting from scratch accuracy, and generality of

s High-value meshing and mOde“ng overall
physicsroutinesin original s Replacing the solver may
languages can be “solve” several other issues
substantially preserved = However, piecesof the legacy

m  Partitioning, reordering and solver may have value as part
mapping onto distributed of a preconditioner
data structures (that we may :
provide) adds code but little b Solver toolkits should
runtime include “ shells’ for

b Distributions should callbacksto high value
Include code samples legacy routines

exemplifying “ separation
of concerns’
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What we bdieve about solvers

Solvers are employed as
part of alarger code

Solver library isnot only
library to belinked

Solvers may be called in
multiple, nested places

Solverstypically make
callbacks

Solver s should be swappable

Solver threads must not
Interferewith other
component threads,
Including other active
Instances of themselves

e Solversareemployedin
many waysover thelife
cycle of an applications

code

m  During development and
upgrading, robustness (of the
solver) and verbose
diagnostics are important

s During production, solvers
are streamlined for
performance

P Tunability isimportant
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What we bdieve about software

e A continuousoperator may
appear in adiscrete codein

many different instances

= Optimal algorithmstend to be
hierarchical and nested iterative

m  Processor-scalable algorithms
tend to be domain-decomposed
and concurrent iterative

m  Majority of progresstowards
desired highly resolved, high
fidelity result occursthrough
cost-effective low resolution, low
fidelity parallel efficient stages

b Operator abstractions and
I ecurrence ar e important

Har dwar e changes many
timesover thelifecycleof a
softwar e package

m  Processors, memory, and
networ ks evolve annually

m  Machinesarereplaced every
3-5yearsat major DOE
centers

m  Codespersist for decades

Portability iscritical
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Goalg/Success M etrics

TOPS uUsers—

Under stand range of algorithmic options and their tradeoffs

(e.g., memory vs. time, inner iteration work vs. outer)

Can try all reasonable options easily without recoding or
extensive recompilation

Know how their solversare performing
Spend moretimein ther physicsthan in their solvers

Areintdligently driving solver research, and publishing
joint paperswith TOPSresearchers

Can smulate truly new physics, as solver limitsare steadily
pushed back (finer meshes, complex coupling, etc.)
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Expectations TOPS has of users

Tell usif you think our assumptions above areincorrect or
Incomplete

Be willing to experiment with novel algorithmic choices —
optimality israrely achieved beyond model problems
without interplay between physics and algorithmics!

Adopt flexible, extensible programming stylesin which
algorithmic and data structures are not hardwired

Bewilling to let us play with thereal code you care about,
but be willing, aswell to abstract out relevant compact tests

Be willing to make concrete requests, to understand that
reguests must be prioritized, and to work with usin
addressing the high priority requests

If possible, profile before seeking help
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TOPS may befor you!

For moreinformation ...

http://www.tops-scidac.org

Terascale Optimal PDE Simulations
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